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Normal vector models of the geomagnetic secular variation
during late Tertiary time

By R. E. Dopson
Department of Geological Sciences, University of California,
Santa Barbara, California 93106, U.S.A.

During late Tertiary time, the secular variation of the geomagnetic field vector at a
number of widely separated sites can be modelled as the sum of the field vector of a
randomly sampled isotropic normal dipole moment and a non-dipole field vector that
is a function of the assumed source geometry. Here, the non-dipole field vector distri-
bution is calculated in the limit for an infinite number of radial dipole sources on the
core surface with a possible latitudinal bias in geographic distribution and a normal
moment distribution that is invariant with respect to geographic location. The model
therefore consists of four degrees of freedom, and for the usual case of unit vector data
the number reduces to three because the dipole variance the and non-dipole source
moment variance can be specified only as their ratios to the mean dipole moment.
The resultant non-dipole field vectors are non-isotropically normal with zero mean
(if and only if the mean of the source moment distribution is everywhere zero). For
the assumed source geometry, the dipole-non-dipole sum is normally distributed with
mean and covariance as functions of latitude. For direct comparison with the available
directional data, the normal distribution is integrated over all possible vector magni-
tudes to yield the associated unconditional (unit vector) distribution.
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1. INTRODUCTION

In most statistical models of the distribution of the angular variance of the palacomagnetic
field vector as a function of time, the field vector is assumed to belong to a unit vector popula-
tion whose variance in magnitude can be ignored. Owing to experimental difficulty and the
mineralogical complexity of most rocks, estimates of the palacomagnetic field direction generally
do not include reliable estimates of the vector magnitude. In most cases, therefore, a description
of the data in terms of their unit vector directions alone seems appropriate and sufficient. A
major difficulty inherent in unit vector analysis is the fact that even though the true (three-
dimensional) vector distribution may be conceptually simple in form, the distribution of the
directions of its constituents may be analytically intractable. For example, rotational sym-

Y, \

metry about the mean vector direction (provided that it exists) is usually regarded as a necessary,
but not sufficient, condition for analytical simplicity of a unit vector distribution; yet it is
possible to construct many simple vector sets whose unit vectors do not possess such symmetry.

The two directional distributions that have been analysed in most detail are those of Fisher
(1953) and Bingham (1964, 1974), including its special cases, the Dimroth-Watson distribu-
tions. Both Fisher’s and Bingham’s distributions may be defined as conditional distributions
of the three-dimensional normal distribution. Fisher’s distribution is the subset of the isotropic
normal conditional upon a given vector length (Downs 1966; Downs & Gould 1967), whereas
Bingham’s distribution is the subset of a non-isotropic normal with zero mean conditional
upon a given vector length (Bingham 1964). Fisher’s distribution has the additional remarkable

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

13 Vol. 306. A

a5
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to SO

Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. MK
Www.jstor.org


http://rsta.royalsocietypublishing.org/

71—\

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

a
s

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

194 R.E. DODSON

property that it is also very similar to the unconditional angular distribution of the isotropic
normal integrated over all vector lengths. .

Fisher’s distribution has played a central role in the statistical analysis of palacomagnetic
data. In addition to its applications for statistical inference, the distribution has often served
as the basis for models to explain the observed changes in the field direction with time — or
more precisely, with random sampling in time. Although the angular distribution of palaeo-
magnetic field directions is not Fisherian at all locations, it has been noted that when the
directions are transformed to virtual geomagnetic poles (v.g.ps), the distribution of the poles
is usually more nearly Fisherian than that of the field directions themselves. By definition, the
v.g.p. defines the axis of a geocentric dipole moment that gives rise to the observed field
direction. The field—v.g.p. relation is therefore defined by the following simple transformation:
given a field vector h measured at geographic latitude A, and longitude ¢,, the corresponding
virtual dipole moment m is

m = a*UTh, (1)
where a is the radius of the Earth, U is the orthogonal matrix
cos¢, —sin¢g, 0 sin Ay 0 cosAg
U = |sin ¢, cosy O] . 0 1 0 (2)
0 0 1 —cosA, 0 sin A,

and T is the non-orthogonal, diagonal matrix
T = dlag (1: -1, _%) (3)

(The negative signs in T result from the conventional definition of the v.g.p. as the south
magnetic pole.) Conversely, if the source of the field is a geocentric dipole, the field vector at
all sites (A, ¢,) is given by the inverse of (1):

h = a3T-U-'m. (4)

Equations 1 and 4 are used extensively in palacomagnetic analyses to transform individual
field directions to v.g.ps (or vice versa). In addition, they can be used to specify the trans-
formation of the distribution of a set (or a conditional subset) of vectors from one coordinate
system to the other. Consider, for example, a normal distribution of dipole moments with co-
variance 4,, about the mean value m,:

p(m) dv,, = {(2n)* det (4,,)}* exp {—(m—my)t 47} (m —m,)} dv,, (5)

where mt denotes the transpose (row) vector of the column vector m. By (1),
(m—my) = a3UT(h—h,), (6)
where hy = a=3TUm,, (7
so that (m—myt 4, (m—my) = a*(h—hy)t TUA, UT(h —h,). (8)

Therefore, a normal set of virtual dipole moments with mean m, and covariance 4,, maps
into a normal set of field directions with mean h, and covariance

4, = aST-'U-4,, UT. (9)

For the special case of isotropic covariance 4,, = o}/, the distribution of the subset of p(m)
for all vectors of length 7 is precisely Fisherian with precision parameter k = r|m,| /o3, and
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the distribution of all vectors, regardless of length, is approximately Fisherian with « & m3/o3.
Although (9) ensures that the isotropic normal p(m) maps into a normal p(h), the operator T
precludes the possibility that p(h) is also isotropic (or that its directional distribution is
Fisherian). The transformation of a surface of equal probability for the isotropically normal
moments is illustrated sequentially in figure 1. For simplicity the mean dipole moment m, is
assumed to be parallel to the rotation axis, and the scaling constant ¢~ is ignored. The shape

m, Z
(a) (b)
my X @
Z!
(c) ()
x' hy
h,

Ficure 1. A sequential illustration of the transformation of an isotropic normal dipole moment population into
the corresponding normal field vector population. (a - b represents the operator U-%, and b - ¢ — d repre-
sents the operator T.-1.)

of the transformed surface is a geographically invariant prolate ellipsoid whose vertical semi-
major axis is twice the horizontal semiminor axes. The orientation of the ellipsoid with respect
to the mean vector by = —mya=3(cos Ay, 0, 2 sin A,) does vary with geographic location, how-
ever, as does the configuration of the vector directions with respect to the mean direction.
For A,, = 021, then, (9) is equivalent to model B proposed by Creer ef al. (1959) and Creer
(1962) to account for the geographic variation of the angular dispersion of the palacomagnetic
field vector.

2. THE NON-DIPOLE CONTRIBUTION TO SECULAR VARIATION

If 4,, is isotropic in space and invariant in time, the field directions sampled at all Iccations,
upon transformation to v.g.ps, would indicate a common and invariant Fisherian population.
Whereas most v.g.p. data are more nearly Fisherian than the corresponding field directions,
there is a significant increase of v.g.p. angular dispersion with increasing latitude (McElhinny

13-2
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196 R.E. DODSON

& Merrill 1975). The covariance of terms of higher degree than the geocentric dipole must
therefore be included in the total covariance estimate. The generalization of model B to include
the variances (and possible non-zero means) of harmonics g/ and 4 of degree i > 1 is im-
practical because of the number of degrees of freedom required, and because the appropriate
moment to field transforms are unknown.

According to model D developed by Cox (1970) to account for the contribution of the non-
dipole field, the total non-dipole variance is approximated as a uniform vector distribution
(specifically, as a normal distribution with zero mean and isotropic covariance). Owing to the
additive property of the normal distribution, it is then simple to determine the distribution of
the vector sum of the dipole and non-dipole field vectors. Provided that the variance o241 of
the non-dipole field is not a function of geographic location, only two degrees of freedom
(03/m3, and o?4/m§ are required to describe the distribution of the unit vectors. In field space
the vector mean is by = —mya=3(cos Ay, 0, 2 sin A,) with covariance 4, = o2+ 03a~® diag
(1,1, 4). Upon transformation to virtual dipole moment space, m, = my(0, 0, 1) with co-
variance

sin? A, 0 —1sin 22,
4, = (03+3a%02y) I+3/4a%2,| 0 1 0 . (10)
—~3sin2A, 0 cos? A,

For @304, 0y < my, it is easy to show that the angular variances of the unit vectors of the two
distributions about their means are approximately

(5+3 sin? A,)

2 _ - 2l AT 20 T0)
Sh = a~%(oo/my) {(1+3sin2 PRE

in field coordinates, and

S = 2(00/my)? + §a¥(0ma/me)? (5+3 sin? A,) (12)

|+ 2(0a/ma)? (143 5int A) (11)

in v.g.p. coordinates. The term (1 + 3 sin? A,) derives from the latitudinal variation of the mear
field vector magnitude, whereas the term (5+ 3 sin2 A,) results from the orientation of the
distribution ellipsoids with respect to their respective mean vectors. Equations (11) and (12)
were derived by Cox (1970), who stated that (12) is valid only if the field vectors are Fisherian.
This is an unnecessary restriction since neither the field vectors nor the v.g.ps are in fact
Fisherian. The validity of the derivation is based solely on the initial assumption that the total
field vector consists of two components, a dipole that is isotropic about a non-zero mean
(Fisherian) in moment space, and a non-dipole vector that is isotropic about a zero mean in
field space. The ambiguity in Cox’s derivation is then removed if his ‘v.g.p. symmetric’
operator transforms only the first term in (11) and his ‘field symmetric’ operator transforms
only the second.

An important corollary of model D is that a sinusoidal oscillation of the dipole moment
magnitude cannot be distinguished from a larger non-dipole variance by using only unit
vector data. This corollary may be generalized to include any combination of sinusoids, so
that in the limit a Fisherian unit vector is equivalent to a constant vector with isotropic
white noise.
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3. THE NON-DIPOLE FIELD AS A FUNCTION OF ITS SOURCE

Model D suffers from two major deficiencies.

1. The predicted variation in the v.g.p. angular dispersion resulting from the non-dipole
field alone is only 1 to 1.26 from the equator to the pole. This variation is much smaller than
the variation observed in the present non-dipole field, and it is also smaller than the variation
required to model the palaecomagnetic data. This deficiency may be circumvented by allowing
0pq to increase with latitude, but that can be done only at the expense of ignoring the following
objection.

2. Although it is mathematically expedient to model the field by the two simple distributions
used in model D, it should be remembered that the choice of distributions is arbitrary and
provides little information about the processes within the core by which the field is generated.

Here I shall attempt to modify models B and D by assuming that the variance of the field
results from a stochastic assemblage of simple sources located in the outermost region of the
core. For simplicity, the model is constructed so as to minimize the number of degrees of
freedom. Collections of palacomagnetic data from different latitudes may then be used to
obtain the best estimates of the parameters necessary to specify the model. As in models B and
D, it is assumed that the total moment, when averaged over a long interval of given polarity,
is a geocentric axial dipole moment +m(0, 0, 1). The variance about the corresponding mean
field vector Fmya—3(cos Ay, 0, 2sin A,) is assumed to consist of an intrinsic random normal
perturbation of the dipole moment and an additional perturbation originating from transitory
sources on the core surface.

As a first approximation, it is assumed that the core surface sources may be represented by
radially oriented dipoles. Although the contribution of tangentially oriented dipoles has been
investigated to some degree, it is difficult to characterize their distributions to fit the data with
a small number of degrees of freedom. I shall therefore restrict the present discussion to the
contribution of radial dipoles.

The field components observed at the Earth’s surface at latitude and longitude (A,, ¢,)
generated by a radial dipole of moment mg, depth (¢—a«), and coordinates (A, @),
h; = mga=3f;(a/a, A, §s; Ao, @) are given by Hurwitz (1960). For the core surface, @ & }aso that
we need to specify only the joint moment—geographic distribution p,,(m, A, ¢;) of the dipoles
in order to calculate the corresponding distribution of the field vectors p,(h(A,, ¢,)) at all
locations. At this point we must simplify p¢ before proceeding quantitatively. The variance of
the perturbing field must increase with latitude so that it is reasonable to assume either that
the density of dipoles increases with latitude while their moment distribution is invariant or
that their moment variance increases with latitude but their density is uniform on the core
surface. Provided that the moment distribution is everywhere symmetric about zero (that is,
inward and outward pointing dipoles are equally probable at all locations), the two simplifica-
tions are indistinguishable. Throughout this discussion I have assumed an invariant moment
distribution, but the reader is cautioned that this simplification cannot be modified as readily
as the alternative one to include the possibility of standing perturbations of the geocentric
dipole. If m is independent of location, then p,,(mg, Ay, ¢5) = p1(mg) po(Ag, @), and by choosing
the simplest distributions that satisfy the criteria discussed above we have

pi(mg) = (2m05)~F exp (—m}/207) (13)
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and pa(As, §s) = K/ (47 sinh k) cosh (kg sin Ay), (14)

where o2 is the moment variance and «; is the polar concentration parameter of the radial
dipoles.

For discrete sources, the complexity of the Hurwitz transforms f; precludes an analytical
evaluation of p,(h), but if the number of sources is large, the distribution of k& converges to the
normal so that only the mean and covariance need to be calculated. Therefore, given that

fw mspl(ms) dms =0 and fw mﬁpl(ms) dms = 0'§,

then E{h;(Ag, $9)} = 0 for all k; and at all (A, ¢,) (15)
and
2n (i
E{hi(AO’ ¢0) ‘hj(AO, ¢0)} = a—ﬁdg J}) J‘—‘}n p2</\s’ ¢s)ﬂ(%, /\s, ¢s; AO’ ¢0)
Xf;-(%, As’ ¢s; )‘*0, ¢0) - COs Asd)‘*sdgbs, (16)

log, o2

[ S N R S SR B |
0 30 60 90

latitude/deg
Ficure 2. The variation of the non-zero covariance elements of A(A,) as functions of
latitude calculated for k, = 5 and (0,/mg)? = 0.028.

so 0% = E(h%) and o;; = E(h; k), where j = 1,2, 3 denotes the components x, y and z,
respectively. Here we have neglected any electrical shielding by the core or lower mantle.
Owing to the symmetry of p,(m;), shielding has no effect on the calculation of E(4;), but it
will alter the calculation of E(h;h;) because additional weighting functions (and probably
integration in additional variables) will be required.

For the uniform distribution of dipoles (ks = 0), the integrals of (16) may be evaluated
analytically to yield 4, = 1.918024~% diag (1, 1, 2.943) at all sites (Aq, @). This result may
be separated into the uniform and dipolar components

A, = 0.676 a—50% diag (1, 1, 1) + 1.242 a~%? diag (1, 1, 4)

so that model D accommodates the trivial case of uniformly distributed dipoles provided
that aSo23/0} < 0.544. Note that when a02;/03 = 0.544 all the apparent dipole variance
required by model D is provided by radial dipole variance.
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For the longitudinally symmetric distribution p,(A,), the covariance elements o, and o,
are identically zero for all x; and at all sites (A,, @y). The remaining four elements o2, o2, o2
and o, are independent of longitude and may be calculated numerically or expressed ana-
lytically as a multiple summation in powers of k; and elementary functions of Ay. The covariance
elements as functions of latitude calculated with «, = 5 are shown in figure 2. The choice of
kg = 5 as the optimum value results from the assumption of an intrinsic geocentric dipole
wobble with angular standard deviation approximately 10° (¢3/m ~ 0.015) in accordance
with model D. The total covariance about —mya—3(cos A, 0, 2 sin A,) is then

A4, = o2a%diag (1, 1, 4) + 02aS4(A,), (17)

where 4(A,) is the matrix of calculated covariances plotted in figure 2.

The four degrees of freedom of the model are k,, my, o3, and ¢2, and if no information
regarding the magnitude of the field is available, only «, (0y/my)% and (og/m,)? are required.
Given A(A,), the covariance in v.g.p. coordinates is easily calculated by using (9):

A, = o2I+02UTA(),) TUL (18)

Because it is the distribution of the unit vectors (regardless of their individual magnitudes)
that is to be compared with the data, the normal distribution (equation (5)) must be integrated
over all 0 < m < oo (or all £ in field space) so that

pO, 83 A) = (20 det (A} “rrdr exp (~h(s— s AMx—m)), (19)
0
where
r=|%|, ¥=m (or h), A = 4,, (or 4,), and &, = m,(0, 0, 1) (or —mya=3(cos Ay, 0, 2 sin A,))

in v.g.p. (field) coordinates. Although an analytical solution of this integral exists, its com-
plexity renders it of little value (other than for computation), and it will not be discussed here.

The problem at hand is then to determine the set of parameters &g, (0y/m,)2 and (o,/m,)?
(provided that such a set exists) that optimizes the fit of p(6, ¢; A,) to data collected at as
many latitudes as possible. If an optimum set is determined, it is then simple to test each
distribution of data against the theoretical distribution to determine the confidence with
which the theoretical distribution can be rejected.

The density of (19) in colatitude & was derived by Dodson (1980) with a Monte Carlo
simulation in which 20 radial dipoles were used. Based upon data from Iceland (Watkins ez al.
1977; Watkins & Walker 1977), the Canary Islands (Watkins 1973) and Hawaii (Doell & Cox
1965), the parameters k, = 5, (0y/my)2 = 0.015 (10° ‘dipole wobble’) and (oy/my)% = 0.028
were chosen as optimum values. (For n identically distributed discrete dipoles o2, 02 = no?;
thus for 20 dipoles, (oy/m,)? = 0.028 corresponds to o,/m, = 0.0375.) However, my initial
conclusion, that the distributions of v.g.ps from higher latitudes more closely resemble the
bipolar Dimroth—Watson distribution than they do Fisher’s distribution, was merely coincidental.
Despite their apparent similarity, the Dimroth-Watson distribution describes a conditional
subset of normal vectors whose properties are very different from those of the unit vectors of
(19), which is in fact much more closely related to Fisher’s distribution.

Despite the goodness of fit of the proposed distribution to late Tertiary (approximately
13 Ma B.P. to present) data from the North Atlantic, the parameters specified above do not
seem to fit as well the earlier data from the same region (e.g. the Miocene data from the Canary
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Islands) nor data from widely separated localities, specifically the Hawaiian data. (For both
data sets, the null hypothesis can be rejected with greater than 959, confidence.) The fit to
the Hawaiian data is good (with less than 909, confidence for rejection), however, if the
‘non-dipole’ covariance A(Ay) at A, = 10° is used rather than the covariance predicted for
Hawaii’s true latitude (A, = 20°) (while retaining the dipole co -ariance predicted for the
true latitude). Although the departure of the Hawaiian data from the predicted distribution
may indicate a longitudinal asymmetry of p,(A, ¢), as suggested by Doell & Cox (1972), an
alternative explanation may be that one or more of the fitted parameters varies in time with
wavelengths comparable with or longer than the record lengths. A crucial test is therefore
whether variation in angular distribution is greatest for variation in longitude over a given
time interval or for different time intervals at a given longitude.

4, SUMMARY AND CONCLUDING REMARKS

My original estimation of the parameters kg, (0,/my)? and (oy/my)? (Dodson 1980) was
based upon an analysis of all the data (or all the data with intraflow consistency) provided
by the references cited above. No data were excluded from the analysis on the basis of large
angular distances from the population mean. Some of the low latitude poles are likely to have
been recorded during transitions from one polarity to the other - an interval during which
(m—m;)%/o3 > 1 and the constraints imposed upon the model are violated. It is therefore
possible that the estimates of «, and (o,/m,)? are somewhat larger than the values required
to account for normal (non-transitional) secular variation.

Despite the rigid constraints imposed upon the model, the set of optimum parameters is
not unique, or, more precisely, it cannot be considered unique within the limits of statistical
resolution provided by currently available data. The choice of parameters (o,/m,)2 = 0 (no
intrinsic geocentric dipole variance), (o,/my)? = 0.038 and «, ~ 3.4 yields a covariance A(A,)
that is very similar (but not identical) to the original 4, of (17) with (o,/my)2% = 0.015,
(0g/mg)? = 0.028 and «, = 5. It is obvious, however, that there exists only a finite number
of sets of optimum parameters. Since the observed angular variance of v.g.ps can nowhere be
smaller than 2(oy/m,)?, values for (o/my)? much in excess of 0.028 are not permitted. Similarly,
values for «, < 3.4 yield angular distributions whose variation with latitude is too small to
account for the observed variation. These limitations place upper and lower permissible bounds
on all three parameters.

The existence of a bounded space of permissible parameters has interesting implications.
Consider the calculated covariance A(A,) at the equator (A, = 0) where o,, = 0 and o3, o2
and ¢? are all minimum (for k; > 0). If 02, = min (02, 02, 0%) at A, = 0, then we may
write ANy) = A'(Ag) + 0%y, diag (1, 1, 4) (20)
such that A'(2,) represents a purely non-dipole covariance and the second term is a purely
dipole covariance. This apparent dipole variance is generated by the sources on the core
surface independently of any intrinsic dipole variance. The total dipole variance therefore
consists of two components, one of which is independent of the non-dipole field, and one of
which is linearly dependent on the non-dipole field. The choice of (o7y/my)2 = 0, (075/my)% = 0.038
and k, = 3.4 therefore results in complete coupling between the dipole and non-dipole
variance, whereas the former choice (oy/my)? = 0.015, (o/m,)? = 0.028 and «; = 5 approxi-
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mately minimizes the coupling between the two variances. Complete decoupling or negative
coupling is not allowed by the model unless the variance of the core surface sources is dependent
upon the intrinsic dipole variance.

The possibility of coupling between the dipole and non-dipole variances is relevant to the
present discussion only if (o/m)2 or (0y/m,)? varies with time. If, for example, o, varies with
a wavelength comparable with the record length, then complete coupling will result in a greater
variation in the distributions of data from different intervals (and common latitude) than will
only partial coupling.
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Discussion

F. J. Lowss (School of Physics, The University, Newcastle upon Tyne, U.K.). Dr Dodson’s random
dipole model is essentially one of a white noise source at the core surface, the variance being a
function of latitude. The estimation of the noise at the Earth’s surface could be done by using
a spherical harmonic analysis of the white noise source, and this would be easier if the latitu-
dinal variation were that of a (sum of) Legendre polynomial(s) rather than that of a Fisher
distribution.

R. E. Dopson. If the source functions f;(a, As, @s; Aq, $o) and the source density function
P2(As, @) are expressed as sums of Legendre polynomials, then all the non-zero covariance
coefficients at the surface can be calculated as multiple sums that include the integrals

f 11 P(x) P2(x) PY(x) dx.

Although these integrals are known for all n, n’, £ and m (the ‘Gaunt integrals’), the summa-
tions are cumbersome and provide little gain in efficiency of calculation compared with direct
numerical integration of the source functions. It should be pointed out, however, that in terms
of the spherical harmonic expansions, the calculations are easily generalized to account for
any distribution of sources, or for different source functions.
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